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ABSTRACT

A pair of complex conjugate fourth-order differential equations that

govern the deformation of orthotropic circular cylindrical shells is

presented. As shown in the paper, this pair of equations is as accurate as

equations can be within the scope of the Kirchhoff assumptions. Also

presented for the first time are several pairs of accurate and simple fourth

order equations which can be systematically and explicitly deduced from the

previously mentioned pair of equations. Because of their accuracy and

simplicity, these simple equations are of practical importance. The advantage

in applying those equations presented herein is that their solutions can be

easily found in simple closed forms. This considerably simplifies calcula-

tions for solving problems of orthotropic and laminated composite cylindrical

shells. Unlike other known equations in the literature, their general solu-

tions remain unknown because of the algebraic complexities involved.
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AN ACCURATE THEORY AND SIMPLE FOURTH ORDER GOVERNING

EQUATIONS FOR ORTHOTROPIC ANC COMPOSITE CYLINDRICAL SHELLS

Shun Cheng* and F. B. He*

Introduction

Considerable attention has been devoted to the study of isotropic cylin-

drical shells. Literature on thts subject is quite extensive. In contrast,

relatively little work has been done on the formulation of the basic equa-

tions for orthotropic cyltndrtcal shells, although they are frequently

employed as structural elements tn Industry [1-7]. Examples of orthotropic

shells include laminated composite, perforated and stiffened cylindrical

shells whose material behavior can be considered as orthotropic. Composite

shells (5,6,7) constitute an example of great practical importance.

As is known in the litterature, the classical shell theory is based on

the same basic assumptions emplod" n the theory of thin plates, known as

Kirchhoff assumptions. Since the inception of Love's first approximation,

further simplifications or approximations beyond these basic assumptions

have been introduced in developing the theory of thin shells. As the abundance

of literature indicates, many versions of shell theories have been formulated,

each depending on different versions of the various approximations. This has

,confronted engineers as well as researchers with a controversial problem with

regard to the consistency of the theory, shortcomings of the derivations and

accuracy of the resulting equations. Many sets of resulting equations have

been proposed for isotropic shells [8-12] and especially, due to their

importance in application and the fact that they display nearly every type

of behavior found in general shell theory, for cylindrical shells [8-16].

Several publications are listed in the reference. Others may be

found by consulting these references. As for orthotropic cylindrical shells,
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2.

two types of basic equations, corresponding either to FlUgges's or Donnell's

equations for isotropic shells, have been formulated in the literature [1-3,6].

In either case, a resulting single eighth-order differential equation maybe

deduced. However, the eighth-order equation for orthotropic shells is more

complicated than the corresponding ones for isotropic shells. A common

difficulty with these eighth-order equations in isotropic or orthotropic

shell theory is that their general solutions remain unknown because of the

algebraic complexities involved. For orthotropic cylindrical shells, even

the simpler eighth-order equation based on Donnell approximations as seen in

[23 suffers from the same complexity. Although a fourth-order equation is

presented in [3], this equation does not yield accurate and dependable

solutions as is illustrated through the comparison made between numerical

results from analytical solutions and from experimental d31.a presented in

the same paper [3]. In computing the characteristic roots arising from

solving these eighth-order equations by means of elgenfunctions, it is found

that the two large roots and the two small roots in the same set of solutions

for the characteristic equation are far apart and of different orders of

magnitude. This makes the computation more tedious and time-consuming,

even with the present day numerical techniques.

Recently a general theory for thin isotropic shells was developed by

Markov [17]. It is a consistent theory, since it makes no simplifications

or approximations beyond a clear set of fundamental hypotheses. Other

advantages of the method of derivation as applied to shells of general

curvature have also been illustrated in [17].

In the present paper, a pair of complex conjugate fourth-order partial

differential equations that govern the deformation of orthotropic circular

cylindrical shells is proposed. This pair of equations is deduced from a

set of basic equations which is based on the following Kirchhoff hypotheses:

(a) The transverse normal stress is negligibly small and

: . - , . -.-. -. ,. .. .-.,; - -; .... - ., . ... .' . .' ,.. . .. . . . . .*.. - . .. . . . ". . . . . -
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(b) Normals to the middle surface of the shell remain normal to it and

undergo no change in length during deformation.

The set of basic equations is exact in the sense that in deriving these equa-

tions all terms have been retained without introducing further simplifications

or approximations beyond these fundamental hypotheses. Even those terms which

are of higher-order are kept since they can be summed tn closed form.

Because the pair of equations deduced herein is complex conjugates,

only one of the equations needs to be considered. Further, closed form solu-

tions of the characteristic equations that arise from solving the pair of

governing equations by means of elgenfunctions can be easily obtained. The

technique used is an extension of the one for isotropic shells presented in

[15,16]. From the pair of equations, a number of simplified fourth-order

governing equations can be systematically and explicitly deduced, as shown

in the paper. These fourth-order equations for orthotropic cylindrical shells

are new in the literature and of definite technical importance because these

equations can be easily solved in closed forms and yet retain practically

'the same accuracy as the original eighth-order equation.

Basic Equations

In accordance with the fundamental hypotheses stated previously, the

following basic equations can be deduced for orthotropic circular cylindrical

shells. Let a be the radius of the midsurface of the shell, x, y, z the

axial, circumferential and radial coordinates and a, a the dimensionless

midsurface coordinates along lines of curvatures (a - , a - . The threea a
displacement components u(, u, and uz  of an arbitrary point of the shell

can be expressed in terms of midsurfae displacements u, v, and w as

follows [8,16]

%: u + zW6 , u v-zw ,u u w (1)

.. . 4 . . . . . • . . . • . . .. . . ... .
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where

0i1 a 3w V1 aw

Q ~ aaB aa

- The stress-strain relations for orthotropic materials [18,19] are
E1__ E2E I (e+ve) = 1 - vlv 2 (2e+e

(2)
rT Q GeoMI

where E1, E2  are the moduli of elasticity along the principal directions

a and 0, respectively, G is the shear modulus which characterizes the

change of angles between principal directions a and 0, v1 = a s the

Poisson's ratio which characterizes the decrease in a-direction due to

tension applied in 0-direction, and v2 ' va, is the Poisson's ratio which

characterizes the decrease in 0-direction due to tension applied in a-direc-

tion. Among these material constants there exists the relation [18,19]:

EI v1  E2v2  (3)

'The components of strain at an arbitrary point of the shell are related

to the midsurface displacements by [8,15,16]

e ( 1 v , 32w
e a a a ,2)- 0  a 0 (-2.+w

(4)
1 a u 2wz + w (1)2(2v 2w

e -+ 2-V + - - _ -00 a+z aa a act aaaB a ac Mo

The bending (%~,nl,) and twisting (T) strains are

1a 2w 1 ,a2 w 1 (u v a2w

(5)
Let h be the wall thickness, K1 , K2  the extensional rigidity, 01 , D2  the

flexural rigidity

,.__. . I~~~~j.. .. . . . ...-. .". ."" " " . . .- . . ." " " " ". . ."• " "• " " .. . .•.. .
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K Elh K E2h IN D h2 K11 2K(6
K1  1 _V_1 V 2  K -ui 2 , D1  2W~ TY D ~ 2 (6

and define

k 1 GOl-VI V2)
k El 9 kI E (7)

Let N. 0 be the normal stress resultants, S., the shear stress

resutans, N~ ~ the bending moments, MBM the twisting moments, and

QU QS the transverse stress resultants [15]. These are stress resultants

(N, S. Q1 and couples (M) per untt length of the middle surface and are

related to the midsurface displacements through the stress-strain relations

I s

IN *-i[. au ~ c + V
a a B2cB

K'2 a2~Lhc 2
a 8 aa 33

SB au 3 y 2 az + au)(l+6)J 8

aNTL+ a v aw To_8

a DI au av" a ~ ) 2 8  [(wA 2 a2 +w)(1+6) + V24a2J

a M3a a 38a~

Gh 3 c cz B a3a2W O u V +2 2 2w

*Gh3(. ~ ~ ~ L M +2 M h[u + 2 , 8 (2!t

Mo 77 *.538 o 7 EO 5L aao a3 aa

6a 12a
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D1  2U 2u  2 33 (2k3+Vl+6k

a am av a ' 3
Q - [ - kil(1.,.6} + (kl.v ,,) - --- k++k)-

0D2  k1 a2v (l a 3 w + w ( l + 3w % -y [2 -y~ - (1 +6) (-1 + r 2--+V2 ~--a 3at as8 1 k a2 a

in which

c2 h2

1 2a

and
6 (tanh c V -1 9 c2 + _ ( c)2 + 1 (Vc)4 . .

•Y - C3  + 7 9

The equations of static equilibrium are

3Na s N asS9 + + aX =O, N+ + Q + aY =O;

aQ 3QO
N 0 ---- --- aZ= 0 (9)

M 380 aQ8 =0, 38 " - aQ 0

in which X, Y and Z are surface loads per unit area in x, y and z

directions, respectively.

Pair of Accurate Complex Conjugate Fourth-Order Equations for Normal Deflection

Substituting equation (8) into equation (9), a system of three differ-

ential equations is obtained for the three basic functions. This system is

presented in Table 1 and possesses a symmetrical structure. The three linear

partial differential equations with constant coefficients can be reduced to

a single differential equation of higher order that is more convenient to

solve and/or analyze with regard to the present problem. These three equations

I '.' ,' # 
-

, , ,,-, .% . " .- .- . .,% " _ .% . " o% . % . ." . ' .- .- . . % '



7.

presented in Table 1 shall be considered as algebraic equations in u, v, and

w having coefficients which are constants (elastic constants and c2) and

the symbols of differentiations. Let Do  be the 3x3 determinant of Table 1

and calculate its cofactors 011, D129 .... D33. Let

u - Dilo , v D1 2Oi , w D1301  (sum on i, 1= 1,2,3) (10)

and substitute these expressions in the three equations in Table 1. Then, in

accordance with the theory of linear algebra

1 -v v
aoA + El h 1 a2Xi 0 , (1 • 1,2,3) (11)

are obtained, in which X = X, X2  Y, X3 - Z. If only a normal surface

load Z is applied on the shell, 0, and 02 can be set equal to zero in

equations (10) and (11). Calculating cofactors 031, D32, D33 and Do  from

Table 1 and replacing 3by k , the following are obtained from

equations (10) and (11)

U UL 2 a2  2 - 4  k + (2K-8k 1 4Y a

V - -ka2 _ (vk 2 a2+2c 2[ a 4 a4 0(12)u o - - FVV 1  2~ _T t~ -+ (2k, 1 2v ) ' = .

*1

w 34. +l1 (k.Zvl k1-.v4) (13)4;)

a +k - + k 28 a$

a 2 + k2  4  2 a

Wn ahc K - +1 (l'-l2) k, 2 l  ' 2 + k -74+ 4cK-k I ) - (13)

.5~~~~~ ac8 aaa 6ca ca + 2
1 *

a48 6  2 2 4 2 2 a47
6 k2  6~-- 2 k2- a6  (k-v1  2 a 4

ca am

1 2

inwhich* K k(1..V::2k Vc 2~- ~ c2)+2,Ik 6 4,K4, v(5
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The constant coefficients in equations (121, (131 and (141 may contain co-

efficients htgher than those shown (-of the order c2 or higherl. These

h 1coefficients have been omtted since, in thin shell theory, -< , thus

c2 < 2x10 "4  is a very small number. The complete expression of Do  is

given in the Appendix. Comparison of the magnitude of the coefficients

of the terms which were omitted wtth the coefficients of the terms (having

the same partial differentiations) whtch were retained in equation (14)

reveals that these omitted terms are truly of smaller orders of magnitude.

This fact has been further verified through the actual computation of thes-

coefficients using available numerical data drawn from elastic constants o

many orthotropic materials. In Table 2, the elastic constants of a few

materials are presented. Thusequation (14) is an accurate governing

equation for orthotropic cylindrical shells because this equation is derived

from the basic hypotheses without introducing further approximations in its

derivation except that, as just stated, some negligibly small terms have been

omitted. These small terms have been totally dropped in all the known equa-

tions of orthotropic shells. In some publications, even certain terms in

equation (14) are neglected. In the following analysis, some of these

negligibly small terms will be retained so that equation (14) can be reduced

to a pair of fourth order complex conjugate equations. This not only

tremendously simplifies calculation of the roots of the characteristic

equation which arise from solving the equation by separation of variables

but it also facilitates obtaining solutions in simple explicit forms. As

stated previously, finding solutions of equation (14) in explicit forms is

almost prohibitively difficult due to the algebraic complexity Involved.

In addition to keeping some small terms, the following approximate relation as

given in [2Q,21] is employed:

G - 1 (16)
2(1 + 0V1v,2

%..- . .
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Table 2 Mechanical Properties of Materials

Species k = E2/E1  G/E1  Vi  v2

Glass/epoxy 0.3333 0.1666 0.0833 0.2500

Boron/epoxy 0.1000 0.0333 0.0300 0.3000

Graphite/epoxy 0.0250 0.0125 0.0063 0.2500

Douglas-fir 0.0500 0.0780 0.0220 0.4490

Table 3 Characteristic Roots (w = ePcosna)
(Boron/Epoxy)

I/c n Equation P1, P2  P3 ' P4

(14) 0.009297 + 0.008429i 0.00n079 + 1.000000i
(18) 0.009278 + 0.008414i 0.00079 + 1.000000i

(24) 0.009278 + 0.008414i 0.000079 + 1.000000i

50 0.001 (27) 0.008900 + 0.008843i 0.000079 + 0.9999%7i
50 (25) 0.008872 + 0.008871i n.000079 + 0.999992i

(28) 0.008872 + 0.008871i 0.000079 + 0.999997i

(26) 0.103515 + 0.042850i 0.042877 + 0.103450i
- (29) 0.1I03496 + 0.042858i 0.042869 + 0.103469i

(14 0.093577 + 0.083514i 0.007852 + 1.000139i

(18) 0.093411 + 0.083407i 0.007857 + 1.000138i
(24) 0.093414 + 0.083402i 0.007857 + 1.000138i

50 0.010 (27) 0.089696 + 0.087736i 0.007870 + 0.999889i
(25) 0.089463 + 0.088064i 0.007883 + 0.999372i

(28) 0.089420 + 0.088024i 0.007872 + 0.999839i

(26) 0.328262 + 0.135123i 0.135969 + 0.326220i

(29 0.327653 + 0.135377i 0.135719 + 0.326828i
3.217938 + 1.376923i 1.331418 + 3.327954i

(18) 3.217917 + 1.376970i 1.331469 + 3.327934i

(24) 3.217926 + 1.376965i 1.331472 + 3.327925i

5000 0.100 (27) 3.211572 + 1.3801481 1.329567 - 3.333750i

(25) 3.217595 + 1.377790i 1.332245 + 3.327594i

(28) 3.211551 + 1.380201i 1.329618 + 3.333728i

(26) 3.282622 + 1.351234i 1.359694 + 3.262197i

.29 3.276528 + 1.353769i 1.357185 + 3.268280i

.

I , - -. '- i .. - -. . , . ., -i.. . i i-,'. .--i . "-. - . .- - . , .:- .-L'L' -, , ,' -,., .- , . .-



11.

in which . 1  and .'-vv are geometric mean values for the modulus E

and Poisson's ratio v, respectively. From equations (3), (15) and (16),

we obtain

2k 1 = v'-(1-, K = 2(2k +Vl)=2v -, k2 = 6k (17)

a8

In equation (14), replacing the coefficient k2  of the middle term

(only in this term) by 6k and keeping some of these omitted small terms,

from equations (13) and (14), the governing differential equation for normal

deflection w may be written as

A4 24 34  4

aI 1 2 0 aa a4

in which

,4  a4  a4  a2  a2
"" L = + K + k( + + -

1 a2  4 a4  a4  a2  a2

+ i (k3  + k4  + k5  + k5  + k5
1 aa aC1 3at0 30 a~ c

(19)

and E is the complex conjugate linear differential operator of L, i VT and

c = c , k3 =v I -k , k4 = (k2_2kK-2k)

(20)
k5 = k(K-k-v) ' = (4k-k2 "3 )

As will be shown later, the replacement of coefficient k of the middle

term in equation (14) by 6k has only a negligibly small effect on the solu-

tions of the problem, although the expression (16) is merely an approximate

relation and may not be as accurate as is the corresponding relation for

isotropic materials. In equation (19), it is seen that the last term

2 a2

clk 6  is very small as compared with the term - and1 a6 3 c ac2I aDa

hence can be dropped. This should not yield any noticeable

. . .*,, .'? ' ' . ' . ' , . -. .. ".

.. . . ., '.". ,.-.; " " '- - - . . . . . . . i . : . . . ' .
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effect on the accuracy of the equation as will be further elaborated later.

The homogeneous solutions of equation (18) are obtained fromI
SLw = O, [w ( 0 21)

From equations (12) and (13), we can express u and v in terms of w [15].

Equation (18) reduces to the same governing equation for isotropic cylindrical

shells as deduced in D . Using the relation (16), equation (18) can also be

reduced to the orthotropic plate equation [19] as the radius of the shell

goes to infinity.

Solutions by Eigenfunctions

It may be shown that homogeneous equation (211 and suitable boundary

conditions are satisfied by making use of the following solution when the

eigenfunctions are trigonometric along a generator:

w = ePocosna (22)

in which n = !r , m is an arbitrary integer, k represents the length of

the shell and e is the base of natural logarithms. When the eigenfunctions are

trigonometric in the circumferential direction, w can be taken as

w = ePosnO (23)

in which n is a real number. It is an integer value when the cylinder is

closed and a noninteger value when the shell is open. Substituting expres-

sions (22) and (23) into the governing equation (21) yields characteristic

equations for the determination of the roots p. Four complex roots are

obtained and the other four roots are the complex conjugate numbers to these
2

four roots. The characteristic equations are quadratic equations in p2.

Hence solutions of the present problem can be easily found in closed forms.

,..,,>,..,,.......o.v-.....'..........--. . i;:]
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Simple Equations

The accurate fourth-order equation (21) can be used to obtain a number

of simplified equations which are new in the literature and are of importance

in practice. Considering the actual values of elastic constants of various

orthotropic materials and the smallness of c2 , it can be easily shown that

the last term in equation (19) clk a is much smaller than the term• -I6- 7

hence this term can be dropped in equation (19) as previously stated.
M2ct

When the same considerations are applied, terms with coefficients k3, k4  and

* k5  in equation (19) can also be neglected because they are of a smaller order

of magnitude in comparison with other terms which have the same partial

differentiations in the equation. Dropping these terms in equation (19)

yields the following simplified equation
.. ;4 ;4 ;4 ;2 ;2 + ;2

Lw - + K + k + k + - W 0 (24)
act aca8 3 act a$ ac2

.* If, in equation (24), new dimensionless coordinates E and ¢ are introduced

by stretching the variables a and 0 such that a= '1 and 3 =c'1 n,

the fourth term and the fifth term in equation (24) become kcg( 2- +

The fourth term is small as compared with the last term 1 -  and hence

has little effect on the characteristic roots. Therefore this term can be

dropped in equation (24) and another simple equation
a ; 4  ;)4 ;2 ;a2• Lw " _:-" + K + k + k + ) wa (5

--- -)w=0 (25)
*act aca3 a~ a0 cl ac

is obtained. If the fourth term in equation (25) is also dropped, one

obtains
34 )4 34 i 2

LW + K + k a i W 0 (26)

' . . -.- ". - : : '" ::

"-:"~~~~~~ 2-:.:-'.- :... ..' . .. :<-./ . .:'
, , , .r '_ , ; : :- - . -. % , . , .. , .. - . . .. . . . . • . , " .' " . . .. - .' . .. 'T. ,
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Unlike others presented in this section, the preceding equation is

obtained by dropping a term in equation (25) without the usual presence in

that equation of a similar term having a much larger coefficient with which,

as a justification for the resulting simplification, the dropped term can be

compared. This procedure unavoidably affects the accuracy of the equation,

* as will be seen in the next section.

In deducing the fourth-order equation (21) from the original equation (14)

" only the coefficient k2  of the term 4 4 in equation (14) is replaced by

act 38
* its approximate value 6k (17). If the same approximation is also used for the

coefficient K in equation (19), then equations (24), (25) and (26) become
4V 2 : i B 2

( +kv 2  -c 2 ) w 0 (27)

1act4 2 i 2
N +k - + -T.) w = 0 (28)

(v ±- a w= 0 (29)
c1 I ct2

- n a2  2 2 B2 E2  h
inwhich V= - + _jIV- = -- + -T k 2 and c1 h

2  o2 '  oL2  E' 1  2av"3k(0 -Vv 2 )

By substituting the differential operators L given by equations (24), (25)

and (26) into the left-side of equation (18), the complete version of these

equations including the load term can be written as

a4  4 a4  a4

L [w = _- a T + 2(K-2k-v,) a + k -4-) z (30)
1 act3( aa a

in which L represents any one of the three linear differential operators of

equations (24), (25) and (26). Similarly the complete version of equations

(27), (28) and (29) are

a44
Lw= a4 %Z (31)

L w lV 0
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in which L represents any one of the three linear differential operators

of equations (27), (28) and (291. The Morley, Novozhilov and Donnell equa-

tions for isotropic shells [15] are special cases of the equations (27), (28)

and (91.

Axially Symetric Case

In this case the following equation is obtained from equations (14)

and (13):

d2  2 k(l-v 1V2) (lVIV2 )h
[(7 + 1) + 2 w =- 4 z (32)

dcL c 12 EIc

which can be further simplified to

d d2 2 /k(l-VlV 2) (1-VIV 2).h
J 16[-2]w =-z (33)cd12 E1c4

Problems of Thin Rings and Long Tubes

When a ring is loaded by forces applied at the boundary, parallel to

* the plane of the ring, the stress components are zero on both faces of the

ring. Such a state of stress is called plane stress. Following the

-procedures presented in [22]
d2w a2
d-2 +w = a--M
d7 E I

d v+ w =0 
(34)

I dw v

where I - bh3/12, b = width of the ring, M is the bending moment (M - bM2 ),

and w represents the rotation of radial cross sections of the ring. For

an infinitely large radius a the preceding equations coincide with that

for a straight beam.

When a long circular tube is under the action of lateral loads uniformly

distributed along the axis of the cylinder, we have a state of plane strain.

1 .. • . o. . . . . . .. . • . -., q • ° . . . . . . - . . .. . . • " . -. - . q

":_ ', " , q-"."" . . ; ,-*- ; ".0.*-" . ,"* " -",",*, .,. -. ''* - - .-.. ' "-'' -.. -...- . . . -
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In this case, displacement along the axis of the tube u is zero and v

and w are functions of 8 only. Following the procedures similar to the

deductions of the basic equations for thin rings, the following basic equa-

tions for the bending of long tubes of orthotropic matertals can be obtained:
d~2

d2  12(1-v v2)a 2d w+ W
E2

dv (5+ w 0 (35)

1 dw
Wa (P (- v)

Thus the basic equations of the present theory contain both ring bending

and bending of long circular tubes as spectal cases. However, as stated in

(16], the equations for bending of thin rtngs and long tubes cannot be

deduced from the Donnell equations.

Comparisons and Conclusions

Utilizing the computer, the relative accuracy of the differential equa-

tions presented previously can be further studied through numerical techniques.

This can be done by calculating the numerical values of the characteristic

roots of the equations and making a comparison of the closeness of these

roots. The elastic constants of several typical orthotropic materials are

collected in Table 2. Using these values, the roots calculated from homogeneous

equations of (14) and (18) and equations (24-29) are obtained. Many roots

for other orthotropic materials have also been calculated. Similarities in

the properties of these roots for different materials can be observed. However,

due to space limitations and the fact that the same conclusions can be

drawn from different materials, only Boron-epoxy, Glass-epoxy and Graphite-

epoxy are presented in Table 3 through Table 8 for a range of significant

parameters. From all the numerical results,

,%........,,.:....',,:.. .......,,.'...,.............. .............-.... ......................... ..
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it may be concluded that the differences between the roots of equations (14),

(18) and (24) are negligibly small for all values of n and c. Numerical

results also show that simplified equations (25), (27) and (28) can yield

accurate solutions as seen from the closeness of the characteristic roots

of these equations to those of equations (14), (18) or (241. As is expected,

*: the thinner the shell, the closer in value these roots will be. The simpli-
S.

- flied equations (26) or (29), which is only one term less than equation (25)

or (28), is not always as accurate and dependable as other equations [16]. These

two equations are apparently inaccurate in the case w - ePocosnz when n

is small. Hence, special care is needed when they are employed. All the preceding

conclusions hold also for the case when E1  and E2,' v1  and 2 are

interchanged in the calculations and can be applied to laminated composite

shells. In conclusion, equations (24), (25), (27) and (28) deduced herein

have the two essential properties of accuracy and simplicity and hence are
on

,: of fiportance In applications.4.

hi

A

I
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Table 4 Characteristic Roots (w = ePcosnB)
(Boron/Epoxy)

I/ qa i PlI P2 P39 P41/c n Equation ' 2 3p

(14) 2.802685 + 2.8080321 0
(18) 2.803801 + 2.8091361 0
(24) 2.803801 + 2.8091361 0

50 0 (27) 2.796462 + 2.8142841 0
(25) 2.805359 + 2.8053591 0
(28) 2.805359 + 2.8053591 0
(26) 2.805359 + 2.805359 0
(29 2.805359 + 2.8053591 0
(14 2.939060+ 2.67 95i 0
(18) 2.945199 + 2.6717301 0
(24) 2.945332 + 2.6716091 0

50 1 (27) 2.853203 + 2.7583171 0
(25) 2.948208 + 2.6694311 0
(28) 2.862275 + 2.7495751 0
(26) 2.948680 + 2:6700701 0.058927 + 0.0533591
(29_ 2.862805 + 2.7501731 0.057446 + 0.0551861
14 28.109116 + 27.9980021 0.019553 + 0.0194951
(18) 28.109206 + 27.9980891 0.019553 + 0.0194951
(24) 28.109254 + 27.9980381 0.019553 + 0.0194951

5000 2 (27) 28.075257 + 28.0319501 0.019539 + 0.0195091
(25) 28.109475 + 27.9978271 0.019563 + 0.0194851
(28) 28.076149 + 28.0310601 0.019540 + 0.0195081
(26) 28.109477 + 27.9978291 0.022589 + 0.0225001
(29) 28.076151 + 28.0310621 0.022563 + 0.022526i

• • • •. t . .. . . . . . . . . . . . . . . .
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Table 5 Characteristic Roots (w - ePcosn,)
(Gl ass/Epoxy)

1/c n Equation P1 8 P2  P3 9 P4

(14) 0.006679 + 0.006393i 0.000043 + 1.000000i
(18) 0.006684 4 0.0064061 0.000043 + 1.000000i
(24) 0.006688 + 0.006403i 0.000043 + 1.0000001
( 0 .001 (27) 0.006585 + 0.006503i 0.000043 + 0.9999991(25) 0.006546 + 0.0065461 0.000043 0.9999981
(28) 0.006546 + 0.0065461 0.000043 + 0.9999981
(26) 0.088900 + 0.0368161 0.036824 + 0.0888811
(26) 0.088900 + 0.0368171 0.036824 + 0.0888331

14- 0.067138 '0.63 + .063729 0.004278 + 1.0000331
(18) 0.067147 + 0.063739i 0.004284 + 1.000033i
(24) 0.067149 + 0.0637411 0.004285 + 1.0000331

50 0.010 (27) 0.066126 + 0.064801i 0.004285 + 0.9999231
(25) 0.065748 + 0.065187i 0.004287 + 0.9998471
(28) 0.065748 + 0.065187i 0.004286 + 0.9998731
(26) 0.281398 + 0.116309i 0.116559 + 0.2807941
(29) 0.281363 + 0.116327i 0.116545 + 0.2808371

-(4) 2.738576 + 1.1932501 1.132930 + 2.884387i
(18) 2.738575 + 1.193251i 1.132931 + 2.884387i
(24) 2.738617 + 1.193267i 1.132948 + 2.8844?5i

5000 0.100 (27) 2.738139 + 1.193649i 1.132994 + 2.884726i
(25) 2.738452 + 1.193565i 1.133228 + 2.8842561
(28) 2.738106 + 1.193733i 1.133074 * 2.884691i
(26) 2.813983 + 1.163089i : 1.165591 + 2.8079421
(29) 2.813632 + 1.163263i 1.165446 + 2.8083731

I -- -...' ; ' ': ': : : .: : : :: ! :
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Table 6 Characteristic Roots (w eP cosne,)
-: (Glass/Epoxy)

1/c n Equation P1. P2  P3. p4

(14) 3.773718 + 3.784743i 0
(18) 3.775179 + 3.786174i 0
(24) 3.775101 + 3.786093i 0

50 0 (27) 3.757170 + 3.801267i 0
(25) 3.779234 + 3.779234i 0
(28) 3.779154 + 3.779154i 0
(26) 3.779234 + 3.779234i 0
(29 3.779154 + 3.779154i 0- 14 3.860588 + 3.696090i 0
(18) 3.862294 + 3.697873i 0
(24) 3.862230 + 3.697778i 0

s- i0(27) 3.833873 + 3.725216i 0
(25) 3.867971 + 3.692534i 0
(28) 3.856292 + 3.703559i 0
(26) 3.868686 + 3.6933561 0.078077 + 0.074538i
(429 3.857015 + 3.7043751 0.077861 + 0.074779i14 37.826903 .37.7578121 0.026479 + 0.0264421(18) 37.826902 + 37.757811i 0.026479• 0.0264421
(24) 37.826113 + 37.757011i 0.026478 + 0.0264411

5000 2 (27) 37.819909 + 37.763213i 0.026479 + 0.026440i
(25) 37.827467 + 37.757273i 0.026485 + 0.0264361
(28) 37.822116 + 37.7610101 0.026481 + 0.0264381
(26) 37.827470 + 37.757277i 0.030582 + 0.0305251

- 1 (29) 1 37.822119 + 37.761013i 0.030578 + 0.030528f

S.
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Table 7 Characteristic Roots (w - ePacosn)
(Gr hi t re/ Epox

1/c n Equation Pl'P2 P3'P4

(14) 0.013357 + 0.0117291 0.000158 + 1.000000i
(18) 0.013303 + 0.0116951 0.000158 + 1.000000i
(24) 0.013304 + 0.0116941 0.000158 + 1.000000i

50 0.001 (27) 0.012591 + 0.0125481 0.000158 + 0.999994i
(25) 0.012572 + 0.0125681 0.000158 + 0.9999801
(28) 0.012571 + o.o125671 0.000158 + 0.9999941
(26) 0.123248 + 0.0509921 0.051051 + 0.1231061

"(--{29) 0.123199 + 0.0510121 0.051031 + 0.1231551
(14) 0.1352917 + 0.1151021 0.015698 + 1.000601i
(18) 0.134745 + 0.1147821 0.015702 + 1.000595i
(24) 0.134744 + 0.1147821 0.015702 + 1.000595i

50 0.010 (271 0.127835 + 0.1234731 0.015784 + 1.000040i
• (25) 0.127839 + 0.1238441 0.015855 + 0.998577i

(28) 0.127646 + 0.1236801 0.015787 + 0.999991i
(26) 0.391769 + 0.1604091 0.162270 + 0.387268i
(29) 0.390212 + 0.1610581 0.161632 + 0.3888261
(14) 3.863535 + 1.6251971 1.598486 + 3.928208i
(18) 3.863438 + 1.625419i 1.598720 + 3.928115i
(24) 3.863425 + 1.625414i 1.598715 + 3.928103i

5000 0.100 (27) 3.847469 + 1.6329471 1.593312 + 3.943178i
(25) 3.862934 + 1.6267131 1.599938 + 3.927580i
(28) 3.847456 + 1.632978i 1.593343 + 3.943165i
(26) 3.917688 + 1.604092i 1.622698 + 3.872768i
(29) 3.902121 + 1.1610581 1.616319 + 3.888262i

I

,?'

.1
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Table 8 Characteristic Roots (w = eP'cosn3)
(Gr phite/Epoxy)

1/c n Equation Pl'P 2  P3_P4
l,

(14) 1.986613 + 1.988186i 0
(18) 1.987408 + 1.988976i 0
(24) 1.987389 + 1.9889701 0

50 0 (27) 1.984245 + 1.990535i 0
(25) 1.987400 + 1.9874001 0
(28) 1.987387 + 1.987387i 0
(26) 1.987400 + 1.987400i 0
(29) 1,987387 + 1,9873871 0
14) 2.111661 + 1.8548321 0
(18) 2.119304 + 1.8635291 0
(24) 2.119284 + 1.863523i 0

50 1 (27) 2.024353 + 1.9510961 0
(25) 2.120223 + 1.862897i 0
(28) 2.027557 + 1.948014i 0
(26) 2.120533 + 1.8633581 0.042075 + 0.036972i
29)1 2,027929 + 1,948434i 0.040542 + 0.0389531
14 19.925442 + 19.8224531 0.013807 + 0.013753i
(18) 19.925560 + 19.822572i 0.013807 + 0.0137531
(24) 19.925434 + 19.822448i 0.013807 + 0.013753i

5000 2 (27) 19.889481 + 19.858286i 0.013791 + 0.0137691
(25) 19.925642 + 19.8224961 0.013815 + 0.013744i
(28) 19.889795 + 19.857972i 0.013791 + 0.013769i
(26) 19.925643 + 19.8224981 0.015953 + 0.015870i
(29) 19.889797 + 19.857973i 0.015924 + 0,015899i

......
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previously mentioned pair of equations. Because of their accuracy and
simplicity, these simple equations are of practical importance. The advantage
in applying those equations presented herein is that their solutions can be
easily found in simple closed forms. This considerably simplifies calcula-
tions for solving' problems of orthotropic and laminated composite cylindrical

-shells. Unlike other known equations in the literature, their general solu-
tions remain unknown because of the algebraic complexities involved.
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